翻訳と辞書
Words near each other
・ Common silver belly
・ Common silver-biddy
・ Common skate
・ Common slipper shell
・ Common slug snake
・ Common smoky honeyeater
・ Common smooth-hound
・ Common snapping turtle
・ Common sneezeweed
・ Common snipe
・ Common snook
・ Common sole
・ Common Solomon's seal
・ Common source
・ Common Source Data Base
Common spatial pattern
・ Common species
・ Common splayfoot salamander
・ Common spot of strawberry
・ Common spotted cuscus
・ Common spreadwing
・ Common squeaker
・ Common squirrel monkey
・ Common starfish
・ Common starling
・ Common stingaree
・ Common stingray
・ Common stock
・ Common stock dividend
・ Common stonechat


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Common spatial pattern : ウィキペディア英語版
Common spatial pattern
Common spatial pattern (CSP) is a mathematical procedure used in signal processing for separating a multivariate signal into additive subcomponents which have maximum differences in variance between two windows.〔Zoltan J. Koles, Michael S. Lazaret and Steven Z. Zhou, ("Spatial patterns underlying population differences in the background EEG" ), Brain topography, Vol. 2 (4) pp. 275-284, 1990〕
== Details ==

Let \mathbf_1 of size (n,t_1) and \mathbf_2 of size (n,t_2) be two windows of a multivariate signal, where n is the number of signals and t_1 and t_2 are the respective number of samples.
The CSP algorithm determines the component \mathbf^\text such that the ratio of variance (or second-order moment) is maximized between the two windows:
:\mathbf=_\mathbf \frac
The solution is given by computing the two covariance matrices:
:\mathbf_1=\frac_1^\text}
:\mathbf_2=\frac_2^\text}
Then, the simultaneous diagonalization of those two matrices (also called generalized eigenvalue decomposition) is realized. We find the matrix of eigenvectors \mathbf=\begin \mathbf_1 & \cdots & \mathbf_n \end and the diagonal matrix \mathbf of eigenvalues \ sorted by decreasing order such that:
:\mathbf^ \mathbf_1 \mathbf = \mathbf
and
:\mathbf^ \mathbf_2 \mathbf = \mathbf_n
with \mathbf_n the identity matrix.
This is equivalent to the eigendecomposition of \mathbf_2^ \mathbf_1:
:\mathbf_2^ \mathbf_1=\mathbf^
:\mathbf^\text will correspond to the first column of \mathbf:
:\mathbf=\mathbf_1^\text

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Common spatial pattern」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.